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Using an Adjoint Approach to Eliminate Mesh
Sensitivities in Computational Design

Eric J. Nielsen∗ and Michael A. Park†
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An adjoint algorithm for efficiently incorporating the effects of mesh sensitivities in a computational design
framework is introduced. The method eliminates the need for explicit linearizations of the mesh movement scheme
with respect to the geometric parameterization variables, an expense that has hindered large-scale design optimiza-
tion for practical applications. The effects of the mesh sensitivities can be accounted for through the solution of an
adjoint problem equivalent in cost to a single mesh movement computation, followed by an explicit matrix–vector
product whose cost scales with the number of design variables and the resolution of the parameterized surface grid.
The methodology augments the current practice of using adjoints solely for the flowfield and leads to a dramatic
computational savings. The accuracy of the implementation is established, and several sample design optimizations
are shown.

Nomenclature
D = vector of design variables
f = cost function
K = linear elasticity coefficient matrix
L = Lagrangian function
L/D = lift-to-drag ratio
Q = vector of dependent variables
R = discretized residual vector
u, v = nodal displacements
V = nodal displacement vector
X = computational mesh
� = vector of adjoint variables
ν = Poisson’s ratio

I. Introduction

I N recent years a concerted effort has been made to bring higher
fidelity, physics-based computational fluid dynamics (CFD) sim-

ulations into the aircraft design process. Such tools have typically
been used to perform validations of designs derived through the use
of lower fidelity methods, or in some cases, used in heuristic design
methods that rely heavily on experience. These advanced CFD tools
are now routinely targeted as primary components of automated op-
timization frameworks.

In the field of gradient-based design, one challenge in utiliz-
ing solvers based on the Euler or Reynolds-averaged Navier–
Stokes equations has been an efficient and accurate method for
computing the sensitivity derivatives required by many optimiza-
tion algorithms. Approaches such as finite differencing,1−3 direct
differentiation,4−11 and the complex variable method12−17 can be
used for calculating these derivatives; however, their cost scales di-
rectly with the number of design variables. For typical aerodynamic
design problems where this value may be on the order of tens to
hundreds, this limitation precludes the use of such methods.

To alleviate the computational burden associated with problems
containing many design variables, recent work has focused on the
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use of adjoint methods.10,18−37 Adjoint methods may be imple-
mented in either a continuous or discrete context, depending on
the order in which the differentiation and discretization operations
are performed. Both the continuous and discrete adjoint approaches
introduce an auxiliary, or adjoint, variable that is determined through
the solution of a linearized form of the governing equations. Using
the same solution procedure as is used for the nonlinear system,
asymptotic convergence rates of both equation sets are similar be-
cause the eigenvalues of the two systems are the same. Moreover,
for the discrete adjoint variant used in this paper, if the solution algo-
rithm itself is constructed in a manner that is discretely adjoint to the
baseline scheme, the asymptotic convergence rates are guaranteed
to be identical.21,22,33

In practice, the discrete approach dictates that the effects of the
mesh be accounted for in the subsequent sensitivity derivative com-
putation. If these grid-related contributions are not included, it has
been shown that the resulting sensitivities can be extremely inaccu-
rate and even of the incorrect sign.31,32 Note that these grid-related
contributions do not appear in the continuous approach. The con-
tinuous approach converges to the discrete result in the case of a
sufficiently refined grid, but this condition is seldom, if ever, met in
current practice for realistic three-dimensional complex geometry
computations.

The grid-related terms that arise naturally in the discrete approach
have traditionally been computed using direct differentiation. Un-
fortunately, this expense has hindered large-scale application of the
methodology, despite an adjoint formulation for the flowfield. For a
single design variable, the use of a direct mode of differentiation to
obtain the derivative of a mesh movement scheme based on linear
elasticity was shown in Ref. 32 to cost as much as 30% of a flow
simulation. Clearly, the expense associated with performing this op-
eration for several dozen design variables will dominate the overall
computational cost.

In the current work, an adjoint formulation is introduced that
eliminates the need for an explicit computation of the grid sensi-
tivities that appear in the discrete form of the sensitivity analysis.
The methodology augments the current practice of using adjoints
solely for the flowfield and leads to a dramatic computational sav-
ings. Such an approach has previously been used in the automatic
differentiation (AD) community38; however, no explicit formula-
tions for handcoding such a technique have been found in the litera-
ture. The scheme presented in the current work significantly reduces
the expense associated with the mesh linearizations. Rather than
scaling with the number of design variables, the cost of including
these terms is equivalent to a single mesh movement computation.
Demonstrations of the method show that a rigorous discrete sensi-
tivity analysis for problems based on the Navier–Stokes equations
and involving many design variables may ultimately be performed
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NIELSEN AND PARK 949

at a cost comparable to that of the analysis problem. The subse-
quent impact on the ability to efficiently perform optimizations of
large-scale configurations is also shown.

II. Mesh Sensitivities via Forward Mode
Differentiation

The discrete adjoint technique for sensitivity analysis can be de-
rived in several ways. Here, the approach taken in Ref. 30 is used.
Consider the vector of discretized residual equations R for the Euler
or Navier–Stokes equations as a function of the design variables D,
computational mesh X, and flowfield variables Q. Given a steady-
state solution of the form R(D, Q, X) = 0, a Lagrangian function L
can be defined as

L(D, Q, X, �) = f (D, Q, X) + �T R(D, Q, X) (1)

where f (D, Q, X) represents a cost function to be minimized and
� is a vector of Lagrange multipliers, or adjoint variables. Differ-
entiating this expression with respect to D yields the following:

dL
dD

=
[

∂ f
∂D

+
(

∂X
∂D

)T
∂ f
∂X

]
+

(
∂Q
∂D

)T [
∂ f
∂Q

+
(

∂R
∂Q

)T

�

]

+
[(

∂R
∂D

)T

+
(

∂X
∂D

)T (
∂R
∂X

)T ]
� (2)

Because the vector of adjoint variables is essentially arbitrary, the
coefficient multiplying (∂Q/∂D)T can be eliminated using the fol-
lowing equation: (

∂R
∂Q

)T

� = − ∂ f
∂Q

(3)

Equation (3) represents the discrete adjoint equation for the flow
simulation. The solution of this linear system of equations for three-
dimensional turbulent flows on unstructured grids has been demon-
strated previously in Refs. 30–33. Once the solution for � has been
formed, the remaining terms in Eq. (2) can be evaluated to give the
desired sensitivity vector:

dL
dD

=
[

∂ f
∂D

+
(

∂X
∂D

)T
∂ f
∂X

]
+

[(
∂R
∂D

)T

+
(

∂X
∂D

)T (
∂R
∂X

)T ]
�

(4)
The (∂X/∂D) terms in Eq. (4) represent the mesh sensitivities. In
Ref. 32, a mesh movement strategy based on the equations of lin-
ear elasticity is described, which take the following form in two
dimensions:

∇2u + 1

1 − 2v

∂

∂x
∇ · V = 0 (5)

∇2v + 1

1 − 2v

∂

∂y
∇ · V = 0 (6)

where ν is Poisson’s ratio and the nodal displacement vector is given
by V = u î + vĵ. Although generally not as expensive as a flowfield
computation, the cost associated with solving these equations is not
trivial. If this system is posed as

KX = Xsurface (7)

where K is a constant coefficient matrix that is computed once and
frozen, then the mesh sensitivities may be computed from the fol-
lowing:

K
∂X
∂D

=
(

∂X
∂D

)
surface

(8)

Note that the solution of this linear system is equivalent in cost to
that of the mesh movement [Eq. (7)] and must be obtained once for
each design variable in D.

III. Adjoint Approach for Eliminating
Mesh Sensitivities

Now reconsider Eq. (1), where a subscript f has been appended to
� to indicate the adjoint variable associated with the flow equations
and an additional adjoint variable �g multiplying the residual of the
grid movement problem has been introduced:

L(D, Q, X, � f , �g) = f (D, Q, X) + �T
f R(D, Q, X)

+ �T
g (KX − Xsurface) (9)

Linearizing with respect to D as before yields

dL
dD

= ∂ f
∂D

+
(

∂R
∂D

)T

� f +
(

∂Q
∂D

)T [
∂ f
∂Q

+
(

∂R
∂Q

)T

� f

]

+
(

∂X
∂D

)T [
∂ f
∂X

+
(

∂R
∂X

)T

� f + �T
g K

]
− �T

g

(
∂X
∂D

)
surface

(10)

As before, the coefficient multiplying (∂Q/∂D)T can be eliminated
by satisfying the adjoint equation for the flow simulation [Eq. (3)].
In a similar fashion, the term multiplying (∂X/∂D)T can also be
eliminated by satisfying a second adjoint problem,

KT �g = −
[

∂ f
∂X

+
(

∂R
∂X

)T

� f

]
(11)

With the solution of Eqs. (3) and (11), the final form of the sensitivity
vector becomes

dL
dD

= ∂ f
∂D

+ �T
f
∂R
∂D

− �T
g

(
∂X
∂D

)
surface

(12)

With the formulation just outlined, a single solution of the linear
system given by Eq. (11) is required for each function f . If f is some
quantity composed of aerodynamic coefficients such as lift, drag, or
moments, then several observations can also be made about Eq. (12).
For design problems in which the shape is held constant and only
global parameters such as the angle of attack or Mach number are
allowed to vary, Eq. (11) need not be evaluated and the third term
in Eq. (12) is identically zero. Conversely, for problems involving
solely geometric parameterization variables, the first and second
terms in Eq. (12) are identically zero because there is no explicit
dependence of f or R on D. In addition, the term �T

g (∂X/∂D)surface

is very cheap to compute and only requires an explicit inner product
dimensioned by the size of the surface mesh for each design variable.

The software developed in Refs. 30–32 has been extended to in-
clude the formulation already outlined. In the previous implemen-
tation, the matrix–vector product (∂R/∂X)T � f has been stored to
enable rapid computation of each inner product with ∂X/∂D because
these residual linearizations are constant for all shape parameters in
D. These mechanics are now used to construct the right-hand side
of Eq. (11) in the current work.

The parameterization schemes employed here are described in
Refs. 39 and 40 and rely on a free-form deformation technique to
provide a compact set of design variables for a wide range of config-
urations. Given the current vector of design variables D, the methods
are used to determine the current location of the surface grid points
as well as their analytic derivatives with respect to D, (∂X/∂D)surface.
The schemes are very inexpensive and can be used to consistently
parameterize families of computational meshes suitable for multiple
disciplines.

The matrix K is formed using the method in Ref. 32 and is merely
transposed once all of the contributions have been included. The sys-
tem given by Eq. (11) is then solved using the generalized minimal
residual (GMRES) algorithm41 implemented in Ref. 32. Because
the eigenvalues of K remain unchanged by the transpose operation,
the solution for �g converges similarly to that of the mesh move-
ment scheme. In the current implementation, adjoint solutions for
multiple functions f may be computed simultaneously as outlined
in Ref. 33 by storing multiple right-hand sides for Eq. (11). Once
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950 NIELSEN AND PARK

the solution for �g has been computed, an explicit inner product
with the surface mesh sensitivities for each design variable yields
the final sensitivity vector.

IV. Consistency of Linearization
To verify the accuracy of the implementation, derivatives of the

lift and drag coefficient are computed for fully turbulent flow over the
ONERA M6 wing geometry42 shown in Fig. 1. The grid for this case
contains 16,391 nodes and 90,892 tetrahedra. The freestream Mach
number is 0.84, the angle of attack is 3.06 deg, and the Reynolds
number is 1 × 106 based on the mean aerodynamic chord. The com-
putations have been performed in a domain-decomposed environ-
ment on 12 Pentium IV processors using three different approaches
as outlined in Table 1. All equation sets have been converged to
machine accuracy.

The first linearization method is a direct mode of differentia-
tion using complex variables. This approach was originally sug-
gested in Refs. 13 and 14 and was first applied to a Navier–Stokes
solver in Ref. 12. The primary advantage of this approach is that
true second-order accuracy may be obtained by selecting step sizes
without concern for subtractive cancellation error typically present
in real-valued divided differences. Through the use of an automated
scripting procedure as outlined in Ref. 43, this capability can be
immediately recovered at any time for the baseline code. For com-
putations using this method, the complex step size has been chosen
to be 1 × 10−50. The second technique used to verify the lineariza-
tions relies on the handcoded implementation31,33 of the discrete
adjoint system given by Eq. (3) for the flow equations and the hand-

Fig. 1 ONERA M6 grid used for evaluating linearizations.

Table 1 Schemes used to obtain sensitivities

Method Flowfield linearization Mesh linearization

1 Direct differentiation with Direct differentiation with
automated complex automated complex
variables variables

2 Handcoded discrete Handcoded direct
adjoint, Eq. (3) differentiation,

Eqs. (4) and (8)
3 Handcoded discrete Handcoded discrete adjoint,

adjoint, Eq. (3) Eqs. (11) and (12)

Table 2 Comparison of sensitivity derivatives for lift and drag coefficients using various approaches

Design variable

Method Thickness Shear Camber Twist

Objective function CL
1 −0.584383430968430 −0.073891855284066 1.843734584180741 −0.022010251214990
2 −0.584383430967291 −0.073891855283698 1.843734584180810 −0.022010251215005
3 −0.584383430968115 −0.073891855283921 1.843734584180955 −0.022010251214989

Objective function CD
1 0.058894900355748 −0.006835640271421 0.064393773359690 −0.001817294278046
2 0.058894900355806 −0.006835640271405 0.064393773359692 −0.001817294278046
3 0.058894900355780 −0.006835640271392 0.064393773359720 −0.001817294278046

coded direct differentiation of the mesh terms32 as formulated in
Eqs. (4) and (8). The third approach is similar to that of method
2; however, the present adjoint formulation given by Eqs. (11) and
(12) is used to evaluate the mesh terms.

Sensitivity derivatives for the lift and drag coefficients using sev-
eral shape parameters located at the midspan of the wing are shown
in Table 2. All three methods are in excellent agreement, with the
only discrepancies apparent in the 12th decimal place or better; note
that even at machine precision, the last several digits are often still
fluctuating. A comparison of the convergence rates for the systems
given by Eqs. (8) and (11) is shown in Fig. 2. The systems converge
in a similar fashion.

V. Large-Scale Test Cases
Several large-scale test cases are used to evaluate the impact of

the new scheme. For the cases shown, relative measures in per-
formance are used to establish benefits of the current approach.
The meshes used here are not necessarily optimal for resolving
the flowfields; the intent is solely to demonstrate algorithmic per-
formance on a given discrete model. Each of the grids shown has
been obtained using the methods in Refs. 44 and 45. Note that,
although the cases described here involve compressible flows, an
incompressible implementation31,46 based on the method of artifi-
cial compressibility47 is also maintained.

To show the impact of the current formulation, Table 3 lists tim-
ings for the major software components necessary for aerodynamic
shape optimization. Operations associated with the surface grid eval-
uation and sensitivities are omitted; these costs are negligible in
comparison with the other components. The computations for each
configuration have been performed on different hardware with a
range of compilers; timings for a given test case should only be
compared relative to each other and not to other test cases. For each
of the computations, the residuals for Eqs. (7) and (11) have been re-
duced by 10 orders of magnitude. All of the values shown in Table 3
use an objective function based on the drag coefficient. The data

Fig. 2 Convergence rates for direct and adjoint modes.
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NIELSEN AND PARK 951

Table 3 Timings for analysis and sensitivity analysis components

Wallclock time, min

Analysis Sensitivity analysis

Test case (number Mesh Flowfield Flowfield adjoint Mesh adjoint solution
of design variables) movement solution solution and sensitivities

Inviscid stowed morphing 4 18 42 4
vehicle (175)

Turbulent cruise morphing 3 45 70 4
vehicle (150)

Turbulent wing-body (172) 8 228 184 10

Fig. 3 Surface grid for morphing aircraft in dash configuration.

shown in Table 3 for each test case are discussed in more detail
later.

Morphing Aircraft Configuration
The first two test cases are based on an unmanned combat air

vehicle being pursued by Lockheed–Martin and the Defense Ad-
vanced Research Projects Agency and is described in Ref. 48. The
aircraft is designed to cruise in a conventional configuration and to
fold its wings into a stowed position for the dash/attack portion of
its mission.

The first test case is based on the stowed configuration and is
computed using the Euler equations. The grid used for this case is
shown in Fig. 3 and contains 430,732 nodes and 2,543,772 tetrahe-
dra. The freestream Mach number is 0.80, and the angle of attack is
2 deg. For this test, the geometry has been parameterized using the
package outlined in Ref. 40 to create a set of 175 design variables
describing the wing and fuselage.

Timing results obtained on 16 Pentium IV processors for the vari-
ous components needed for optimization are shown in Table 3. Here,
the flow solver and its adjoint counterpart have been run 300 time
steps. The analysis portion of the computation, consisting of a mesh
movement and a flowfield solution, requires approximately 22 min
of wallclock time. With a single solution of Eq. (11), the sensitivity
analysis for all 175 design variables takes 46 min. Note that the
previous method based on direct differentiation would require 175
solutions to Eq. (8), or nearly 12 h more wallclock time. This savings
is the equivalent of 39 additional flowfield solutions.

To demonstrate an optimization for the current test case, an ob-
jective function based on drag has been used in conjunction with an
explicit lift constraint. In this manner, separate adjoint solutions are
required to evaluate the sensitivities of both the objective and the
constraint. A subset of 63 of the 175 total shape variables are free
to change, subject to side constraints that prohibit thinning of the
geometry. The optimization package described in Ref. 49 is used to
drive the design problem. The results of the optimization are shown
in Fig. 4, where the drag coefficient has been reduced by 52% and the
lift coefficient satisfies the requested constraint value. For this case,
the optimizer requested 26 sensitivity analyses during the course of
the optimization. Based on the earlier timings, the current adjoint
formulation results in a savings of roughly 109 h of wallclock time,

Fig. 4 Lift and drag coefficients during constrained optimization of
dash configuration.

Fig. 5 Surface grid for morphing aircraft in cruise configuration.

or the equivalent of 364 flowfield solutions, in computing the mesh
linearizations for the 63 variables.

The next case is a turbulent flow computation for the baseline
cruise configuration, as shown in Fig. 5. The grid contains 534,525
nodes and 3,159,677 tetrahedra. Here, the freestream Mach number
is 0.80, the angle of attack is 2 deg, and the Reynolds number is
5 × 106 based on the mean aerodynamic chord. This case has been
run on 64 Opteron processors, and results for the component timings
are again shown in Table 3. For these computations, the flow solver
and associated adjoint solver have been run for 800 time steps. The
mesh linearizations for all 150 design variables have been computed
in approximately 4 min. With the direct approach, equivalent results
would require 150 solutions to Eq. (8) at an expense of roughly
450 min or the equivalent of 10 flowfield solutions.

For this test case, the optimization goal is to perform an un-
constrained maximization of the lift- to-drag ratio L/D. The opti-
mization package used for this computation is described in Ref. 50.
Results for the L/D maximization are shown in Fig. 6, where a sub-
set of 54 of the 150 shape design variables are allowed to change,
subject to side constraints that the geometry does not decrease in

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
an

gl
ey

 R
es

ea
rc

h 
C

tr
 o

n 
Ju

ly
 2

, 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.1

60
52

 



952 NIELSEN AND PARK

Fig. 6 Lift-to-drag ratio during unconstrained optimization of cruise
configuration.

Fig. 7 Surface grid for slotted wing–body configuration.

thickness. The final value of L/D is approximately 24% higher than
its initial value. Here, the optimizer required seven sensitivity anal-
yses. The present adjoint implementation for the mesh-related terms
has yielded an estimated savings of approximately 19 h of wallclock
time, or the cost of 25 flowfield solutions, over the direct approach.

Slotted Wing–Body Configuration
The final example is fully turbulent flow over a transport wing–

body configuration with a wing incorporating an advanced slotted
airfoil concept. The mesh for this case is shown in Fig. 7 and contains
1,326,150 nodes and 7,744,304 tetrahedra. The freestream Mach
number is 0.87, the angle of attack is 2.7 deg, and the Reynolds
number is 3 × 106 based on the mean aerodynamic chord. The com-
putations shown in Table 3 have been performed using 64 Opteron
processors. Here, the flow solver and its adjoint counterpart have
each been run 1000 time steps. The surface grids for this computa-
tion have been parameterized using the method in Ref. 37 to create
a set of 172 design variables describing the main wing and flap
geometries. For this case, the analysis problem takes 236 min of
wallclock time vs 194 min for the sensitivity analysis. The present
adjoint formulation for the mesh terms yields a savings of approxi-
mately 23 h in computing the sensitivities for all 172 variables. This
is the equivalent of six additional flowfield solutions.

An unconstrained maximization of L/D is performed for the cur-
rent configuration, using a subset of 41 of the shape parameters in
addition to the angle of attack. As in the earlier examples, the geom-
etry is constrained to maintain its original thickness. The net result
of the optimization procedure is a 32% increase in L/D as shown in
Fig. 8. For this case, the optimizer required 26 sensitivity analyses
during the course of the computation. The previous formulation for
the grid sensitivities would have required an estimated additional
142 h of wallclock time to perform the same optimization. This
savings is the equivalent of 37 flowfield solutions.

Fig. 8 Lift-to-drag ratio during unconstrained optimization of wing–
body configuration.

VI. Summary
An adjoint formulation to efficiently account for mesh sensitivi-

ties has been developed and implemented. In combination with an
adjoint procedure for the aerodynamic flowfield, the new approach
effectively removes the dependence on the size of the design space
for a rigorous discrete sensitivity analysis. Unlike previous meth-
ods that required explicit computation of grid sensitivity terms for
each design variable, the current approach accounts for these terms
through the solution of a single adjoint problem, equivalent in cost
to the mesh movement scheme being used. The method has been
implemented within a three-dimensional unstructured grid frame-
work, and the resulting sensitivity derivatives have been shown to
be in excellent agreement with a direct mode of differentiation us-
ing complex variables, as well as a previous implementation us-
ing handcoded direct differentiation for the mesh terms. Timings
for the major components have been shown for several large-scale
configurations, with dramatic savings obtained through the use of
the adjoint formulation for the mesh linearizations. Demonstration
optimizations yield improvements in vehicle performance for the
discrete models used.
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